If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-576=0.
a = 4; b = 0; c = -576;
Δ = b2-4ac
Δ = 02-4·4·(-576)
Δ = 9216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9216}=96$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-96}{2*4}=\frac{-96}{8} =-12 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+96}{2*4}=\frac{96}{8} =12 $
| -6x-21=-9x6 | | 2x+32+2x+23=x+31 | | 100=v-66 | | 14y+5y-11y=16 | | 2b+16=16 | | 0.5x+4+0.9×=x+5 | | 5(2w-4)=+5 | | x/x-2=2/3 | | x3-5x2+3x-15=0 | | 9q=7q+8 | | 2x+32+2x+23=x | | -4(b+16.4)=4.8 | | -2(4r+4)=-4-52 | | 11c-8c=18 | | 8/2=v/10 | | 3x-(2x+12)=20 | | 8a^2+2a-4=0 | | 3x-8/4+2=7 | | 15+x^2=40 | | -3/2x=1/7x-5/14 | | 6+18x-17=20 | | F(n)=6n+10 | | j/8+18=21 | | x^2+3x-2=360 | | 3a-8+2a=5a | | -5a+6=-34 | | -2+a=-3 | | 11k+21=142 | | -(5-2h)=-(-8+11h) | | −a+4a−9=8a+6 | | -7a-3=2a+12 | | 3x+-6=20x+130 |